Functional separation of variables for Laplace equations in two dimensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the existence of solutions for a class of systems of functional integral equations of volterra type in two variables

the aim of this paper is to show how some measures of noncompactness in the banach space of continuous functions defined on two variables can be applied to the solvability of a general system of functional integral equations . the results obtained generalize and extend several equations . an illustrative example is also presented .

متن کامل

existence of solutions for a class of functional integral equations of volterra type in two variables via measure of noncompactness

this paper presents some results concerning the existence of solutions for a functional integral equation of volterra type in two variables, via measure of noncompactness. two examples are included to illustrate the main result.

متن کامل

Equations in Two Space Variables

Hölder estimates for spatial second derivatives are proved for solutions of fully nonlinear parabolic equations in two space variables. Related techniques extend the regularity theory for fully nonlinear parabolic equations in higher dimensions.

متن کامل

Discrete Dubrovin Equations and Separation of Variables for Discrete Systems

A universal system of difference equations associated with a hyperelliptic curve is derived constituting the discrete analogue of the Dubrovin equations arising in the theory of finite-gap integration. The parametrisation of the solutions in terms of Abelian functions of Kleinian type (i.e. the higher-genus analogues of the Weierstrass elliptic functions) is discussed as well as the connections...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 1993

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/26/8/017